Uitleg H11 leerdoel 4











Noteer dit voor jezelf alvast in je schrift.

Stel je vragen aan de docent die gaat streamen. 
Ga rustig zitten op je plek.
Leg je wiskundespullen op tafel. 

1 / 20
next
Slide 1: Slide
WiskundeMiddelbare schoolhavo, vwoLeerjaar 1

This lesson contains 20 slides, with text slides.

time-iconLesson duration is: 40 min

Items in this lesson











Noteer dit voor jezelf alvast in je schrift.

Stel je vragen aan de docent die gaat streamen. 
Ga rustig zitten op je plek.
Leg je wiskundespullen op tafel. 

Slide 1 - Slide

Vragen tot zover

Slide 2 - Slide

Slide 3 - Slide

Ik kan een lineaire formule opstellen.

Succescriteria
Ik weet wat kwadranten zijn.
Ik kan formules korter opschrijven.
Ik weet wat een lineaire formule is.
Ik kan een formule opstellen.







Slide 4 - Slide

Je hebt eerder geleerd wat een assenstelsel is.

Een assenstelsel bestaat uit

  • horizontale as (x-as)
  • verticale as (y-as)
  • oorsprong, punt O (0,0)

Slide 5 - Slide

Je hebt eerder geleerd wat coördinaten zijn.
De plaats van een punt op de kaart of in een assenstelsel geven we aan met twee getallen. Deze getallen heten coördinaten.

Notatie 


Een roosterpunt is het snijpunt van twee roosterlijnen.
Voorbeeld: A(3,1) en B (0,2).


 
Hoofdletter (horizontaal, verticaal)
P (x,y)

Slide 6 - Slide


Ik weet wat kwadranten zijn.

x
y
0

Slide 7 - Slide

Lineaire formules
Een lineaire formule heeft altijd de vorm:

De b is de beginwaarde (begingetal). Snijpunt met de verticale as.
De a is de stapgrootte. Wat gebeurt er als je een
stap opzij gaat?
 

De grafiek van een lineaire formule is een rechte lijn.



a > 0  stijgende lijn
a = 0  horizontale lijn
a < 0  dalende lijn
 y = a x + b

Slide 8 - Slide

Lineaire formules
Een lineaire formule heeft altijd de vorm:

De b is de beginwaarde (begingetal).  Snijpunt met de verticale as.
De a is de stapgrootte. Wat gebeurt er als je een
stap opzij gaat?
 

De grafiek van een lineaire formule is een rechte lijn.



a > 0  stijgende lijn
a = 0  horizontale lijn
a < 0  dalende lijn
 y = a x + b

Slide 9 - Slide

Lineaire formules
Een lineaire formule heeft altijd de vorm:

De b is de beginwaarde (begingetal). Snijpunt met de verticale as.
De a is de stapgrootte. Wat gebeurt er als je een stap opzij gaat?
 

De grafiek van een lineaire formule is een rechte lijn.



a > 0  stijgende lijn
a = 0  horizontale lijn
a < 0  dalende lijn
 y = a x + b

Slide 10 - Slide

Lineaire formules
Een lineaire formule heeft altijd de vorm:

De b is de beginwaarde (begingetal). Snijpunt met de verticale as.
De a is de stapgrootte. Wat gebeurt er als je een stap opzij gaat?
 




De grafiek van een lineaire formule is een rechte lijn.



a > 0  stijgende lijn
a = 0  horizontale lijn
a < 0  dalende lijn
 y = a x + b

Slide 11 - Slide

Lineaire formules
Een lineaire formule heeft altijd de vorm:

De b is de beginwaarde (begingetal). Snijpunt met de verticale as.
De a is de stapgrootte. Wat gebeurt er als je een stap opzij gaat?
 




De grafiek van een lineaire formule is een rechte lijn.



a > 0  stijgende lijn
a = 0  horizontale lijn
a < 0  dalende lijn
 y = a x + b

Slide 12 - Slide

Een lineaire formule opstellen.
Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een tabel.
Stap 3      Bereken de stapgrootte (a), dit kun je doen door a = ∆ y : ∆ x.
Stap 4      Noteer de beginwaarde (b), dit is het snijpunt met de verticale as (y-as). 
Stap 5      Noteer de lineaire formule, door a en b in te vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.

Slide 13 - Slide





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= ax +b

Stapgrootte berekenen.
a = ∆ y : ∆ x.
a = -6 : 8 = -¾

De grafiek loopt door (0, 14) , dus b= 14

Dus de formule bij de groene grafiek is y= x +14










Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
Stap 3      Bereken de stapgrootte (a), door a = ∆ y : ∆ x.
Stap 4      Noteer de beginwaarde (b), dit is het snijpunt                    met de verticale as (y-as). 
Stap 5     Noteer de lineaire formule, door a en b in te                      vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 14 - Slide





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= ax +b

Stapgrootte berekenen.
a = ∆ y : ∆ x.
a = -6 : 8 = -¾

De grafiek loopt door (0, 14) , dus b= 14

Dus de formule bij de groene grafiek is y= x +14










Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
Stap 3      Bereken de stapgrootte (a), door a = ∆ y : ∆ x.

Stap 4      Noteer de beginwaarde (b), dit is het snijpunt                    met de verticale as (y-as). 
Stap 5     Noteer de lineaire formule, door a en b in te                      vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 15 - Slide





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= ax +b

Stapgrootte berekenen.
a = ∆ y : ∆ x.
a = -6 : 8 = -¾

De grafiek loopt door (0, 14) , dus b= 14

Dus de formule bij de groene grafiek is y= x +14










Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
Stap 3      Bereken de stapgrootte (a), door a = ∆ y : ∆ x.

Stap 4      Noteer de beginwaarde (b), dit is het snijpunt                    met de verticale as (y-as). 
Stap 5     Noteer de lineaire formule, door a en b in te                      vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 16 - Slide





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= ax +b

Stapgrootte berekenen.
a = ∆ y : ∆ x.
a = -6 : 8 = -¾

De grafiek loopt door (0, 14) , dus b= 14

Dus de formule bij de groene grafiek is y= x +14










Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
Stap 3      Bereken de stapgrootte (a), door a = ∆ y : ∆ x.

Stap 4      Noteer de beginwaarde (b), dit is het snijpunt                    met de verticale as (y-as). 
Stap 5     Noteer de lineaire formule, door a en b in te                      vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 17 - Slide





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= ax +b

Stapgrootte berekenen.
a = ∆ y : ∆ x.
a = -6 : 8 = -¾

De grafiek loopt door (0, 14) , dus b= 14

Dus de formule bij de groene grafiek is y= x +14










Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
Stap 3      Bereken de stapgrootte (a), door a = ∆ y : ∆ x.
Stap 4      Noteer de beginwaarde (b), dit is het snijpunt                    met de verticale as (y-as). 
Stap 5     Noteer de lineaire formule, door a en b in te                      vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 18 - Slide

Aan de slag
Heb je aantekeningen genoteerd in je schrift?

Maak opgaven: 





Controleer je werk kritisch met behulp van de uitwerkingen via magister leermiddelen.
Snap je wat je fout gedaan hebt? Verbeter je fouten met een andere kleur. 
Wie kan je om hulp vragen als je het niet begrijpt?
Let ook op je notatie!

Lever in je nagekeken uitwerkingen in via de volgende slides.
ondersteunend: 2, 03, 4, 5, 6, 7 
doorlopend: 2, 3, 4, 5, 6, 7 
uitdagend: 2, 3, 5, 6, 7, U1

ondersteunend: 8, 9, 10, 11, 012, 13, 14
doorlopend: 8, 9, 10, 11, 12, 13, 14
uitdagend: 9, 10, 12efgh, 13efgh, 14, U2, U3

ondersteunend: 16, 017, 19, 20, 21, 22, 23 
doorlopend: 16, 17, 19, 20, 21, 22, 23
uitdagend: 16, 18def, 20cd, 21, 22, 23, U4, U5

ondersteunend: 25, 26, 028, 030, 30, 31
doorlopend: 25, 26, 28, 29, 30, 31
uitdagend: 26, 29, 30, 31, U6, U7

Slide 19 - Slide

Bedankt voor vandaag!
Ga thuis verder met 
de gemengde opgaven.

Slide 20 - Slide