Les HK1 laatste

Voortgezette Integraalrekening
1 / 29
next
Slide 1: Slide
WiskundeMiddelbare schoolvwoLeerjaar 5

This lesson contains 29 slides, with interactive quizzes and text slides.

time-iconLesson duration is: 60 min

Items in this lesson

Voortgezette Integraalrekening

Slide 1 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Hoofdstuk K
Keuzehoofdstuk: Voortgezette integraalrekening

PTA-toets

Slide 2 - Slide

Test
A
A
B
B

Slide 3 - Quiz

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 

Slide 4 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Vorige lessen
Herkenningsniveaus voor primitiveren

Slide 5 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Vorige lessen
Herkenningsniveaus voor primitiveren
f(x)=x2+sin(x)

Slide 6 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Vorige lessen
Herkenningsniveaus voor primitiveren
f(x)=x2+sin(x)
=31x3cos(x)+c
F(x)

Slide 7 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?


xcos(x2)

Slide 8 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?

Voorbeeld (differentiëren met kettingregel):
xcos(x2)
f(x)=sin(x2)

Slide 9 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?

Voorbeeld (differentiëren met kettingregel):
xcos(x2)
f(x)=sin(x2)
f(u)=sin(u)
met
u=x2

Slide 10 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?

Voorbeeld (differentiëren met kettingregel):
xcos(x2)
f(x)=sin(x2)
f(u)=sin(u)
met
u=x2
f(x)=dudfdxdu
'

Slide 11 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?

Voorbeeld (differentiëren met kettingregel):
xcos(x2)
f(x)=sin(x2)
f(u)=sin(u)
met
u=x2
f(x)=dudfdxdu
'
f(x)=2xcos(x2)
'

Slide 12 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?


xcos(x2)
f(x)=sin(x2)
f(x)=2xcos(x2)
'

Slide 13 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?

Een primitieve van                            is dus   

xcos(x2)
xcos(x2)
21sin(x2)
f(x)=sin(x2)
f(x)=2xcos(x2)
'

Slide 14 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode

Slide 15 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode

Slide 16 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode
Bij deze laatste stap is het volgende gebruikt:
dxdx2=2x
2xdx=dx2

Slide 17 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode
Nu gebruiken we  de substitutie
Dan krijgen we: 
u=x2

Slide 18 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode
Nu gebruiken we  de substitutie
Dan krijgen we: 
u=x2

Slide 19 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode
Nu gebruiken we  de substitutie
Dan krijgen we: 
u=x2

Slide 20 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode
Bereken de volgende integraal en noteer je uitwerking.

Slide 21 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode
Probeer te herkennen hoe de functie in de integraal is ontstaan uit de kettingregel. Welke substitutie is gebruikt en waar vind je de afgeleide van die substitutie?

Slide 22 - Slide

Wanneer substitutie?

Slide 23 - Mind map

Foto-opdracht
Bereken de integraal hieronder en maak daarna een foto van je uitwerkingen. Upload deze foto daarna naar de IT's bij het kopje 'Foto-opdracht'.


Als je klaar bent, ga dan verder met het huiswerk:
HK: DT - 1,2,3,10,11,12 en H11: GO - 22 t/m 26 (was 32)

Slide 24 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Recap: Herkenningsniveaus

Slide 25 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Recap: Herkenningsniveaus

Slide 26 - Slide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Recap: Herkenningsniveaus

Slide 27 - Slide

Welke van de volgende functies denk je nu te kunnen primitiveren?
Ik herken direct de primitieve
Ik herken de familie
Ik herken (nog) niks
Ik herken de substitutie-techniek

Slide 28 - Drag question

Einde les

Slide 29 - Slide