wi 4V H6 2A



V Afgeleide en raaklijn
6.1 Toppen en buigpunten
6.2 De afgeleide van machtgsfuncties
6.3 De kettingregel
6.4 Functies met parameters

wi 4V H6
Differentiaalrekening
1 / 15
suivant
Slide 1: Diapositive
WiskundeMiddelbare schoolvwoLeerjaar 4

Cette leçon contient 15 diapositives, avec quiz interactif et diapositives de texte.

time-iconLa durée de la leçon est: 60 min

Éléments de cette leçon



V Afgeleide en raaklijn
6.1 Toppen en buigpunten
6.2 De afgeleide van machtgsfuncties
6.3 De kettingregel
6.4 Functies met parameters

wi 4V H6
Differentiaalrekening

Slide 1 - Diapositive

Hoe goed gaat het tot nu toe?

Slide 2 - Diapositive

Slide 3 - Diapositive

Slide 4 - Diapositive

Slide 5 - Diapositive



V Afgeleide en raaklijn
6.1 Toppen en buigpunten
6.2 De afgeleide van machtgsfuncties
6.3 De kettingregel
6.4 Functies met parameters




6.1C Buigpunt en buigraaklijn 
wi 4V H6
Differentiaalrekening
Ber. alg. coörd. v. buigp.
1 Ber. f'(x) en f''(x)
2 Los alg. f''(x)=0 op
geeft x buigpunt
3 Schets f(x)
4 f''(x)=0 buigpunten?
5 Ber. f(x)=y en Antw.
f(x)
f'(x)
f''(x)

Slide 6 - Diapositive



V Afgeleide en raaklijn
6.1 Toppen en buigpunten
6.2 De afgeleide van machtgsfuncties
6.3 De kettingregel
6.4 Functies met parameters



6.2A De afgeleide van

voor gehele   
geeft
                  voor     (n = ℝ)

!!! Je geeft de afgeleide zoals de functie gegeven is !!!
wi 4V H6
Differentiaalrekening
f(x)=xn
n
f(x)=nxn1
Definitie
f(x)=h0limhf(x+h)f(x)
1 breuk, negatieve exponenten, gebroken exponenten

Slide 7 - Diapositive

6.2A De afgeleide van

voor gehele   
h(x)=31x6
g(x)=4x4
f(x)=xn
n
k(x)=xp

Slide 8 - Diapositive

6.2A De afgeleide van
voor gehele   
h(x)=31x6
g(x)=4x4
f(x)=xn
n
g(x)=16x3
h(x)=36x5=2x5
k(x)=xp
k(x)=xp1
k(x)=(xp)2xp[1]1[xp]
k(x)=x2pxp01pxp1
k(x)=pxp1
k(x)=nxn1
quotientregeln2nattan
bewijsy=xny=nxn1n<0

Slide 9 - Diapositive

6.2A De afgeleide van

voor gehele   
h(x)=31x6
g(x)=4x4
f(x)=xn
n
k(x)=xp

Slide 10 - Diapositive

6.2A De afgeleide van
voor gehele   
h(x)=31x6
g(x)=4x4
f(x)=xn
n
g(x)=16x3
h(x)=36x5=2x5
k(x)=xp
k(x)=xp1
k(x)=(xp)2xp[1]1[xp]
k(x)=x2pxp01pxp1
k(x)=pxp1
k(x)=nxn1
quotientregeln2nattan
bewijsy=xny=nxn1n<0

Slide 11 - Diapositive

vragen?

Slide 12 - Diapositive

Hoe vonden jullie deze les?
😒🙁😐🙂😃

Slide 13 - Sondage

Aan de slag

Slide 14 - Diapositive

Aan de slag

Slide 15 - Diapositive