4.3 theorie A Het aantal rijtjes bestaande uit A's en B's

Uitleg theorie B: Het aantal rijtjes uit A's en B's
1 / 22
suivant
Slide 1: Diapositive
WiskundeMiddelbare schoolhavoLeerjaar 4

Cette leçon contient 22 diapositives, avec quiz interactifs et diapositives de texte.

Éléments de cette leçon

Uitleg theorie B: Het aantal rijtjes uit A's en B's

Slide 1 - Diapositive

Uitleg
En hoeveel mogelijkheden heb ik om in 8 hokjes drie A's en vijf B's te zetten? Bijvoorbeeld


Dus 3 van de 8 een A. Dat kan dan op             = 56 manieren
A
A
A
(38)

Slide 2 - Diapositive

Uitleg
En hoeveel mogelijkheden heb ik om in 8 hokjes drie A's en vijf B's te zetten? Bijvoorbeeld


Dus 5 van de 8 een B. Dat kan dan op             = 56 manieren
B
B
B
B
B
(58)

Slide 3 - Diapositive

Uitleg
En zo is het aantal rijtjes bestaande uit drie A's en vijf B's dus 

en ook               


Dit kan alleen wanneer je steeds 2 keuzes hebt. Dus niet bij ik heb keuze uit rode, groene en blauwe knikkers.               
(38)
(58)

Slide 4 - Diapositive

Hoeveel mogelijkheden heb ik om in 8 hokjes een A of een B te zetten?

Slide 5 - Question ouverte

Antwoord
Ieder hokje A of B


Dus 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 =        = 256
2
2
2
2
2
2
2
2
28

Slide 6 - Diapositive

Willem gooit 7 keer met een dobbelsteen.
Hoeveel mogelijkheden zijn er om 3 keer een vijf en 4 keer een zes te gooien?

Slide 7 - Question ouverte

Maar              = 35  is natuurlijk ook goed!
(47)

Slide 8 - Diapositive

Een bedrijf voorziet zijn artikelen van een code door in een rijtje van 6 vierkantjes er twee zwart te maken en vier wit. Hoeveel codes kan het bedrijf zo totaal maken?

Slide 9 - Question ouverte

of               = 15
(46)

Slide 10 - Diapositive

Opgave 43
We bekijken hierin routes zonder omwegen van A naar B.
De rode route geven we aan met NOONONON.


Slide 11 - Diapositive

Schrijf nog een mogelijke
route op van A naar B.

Slide 12 - Question ouverte

Hoeveel letters staan in een route van A naar B? Hoe vaak staat de letter N daarbij?
Antwoord en dan enter en weer antwoord.

Slide 13 - Question ouverte

Het aantal routes van
A naar B is .
Hoeveel routes zijn er van A naar B?
(rn)

Slide 14 - Question ouverte

Slide 15 - Diapositive

Hoeveel routes zijn er mogelijk van A naar B?

Slide 16 - Question ouverte

Slide 17 - Diapositive

Hoeveel routes zijn er mogelijk van A naar B?

Slide 18 - Question ouverte

Slide 19 - Diapositive

Hoeveel routes zijn er van A naar C?

Slide 20 - Question ouverte

Slide 21 - Diapositive

Huiswerk
Opgaven 42, 43, 44, 49, 50, 51/52

Slide 22 - Diapositive