HK les2b

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Weet je nog
Herkenningsniveaus voor primitiveren
1 / 26
volgende
Slide 1: Tekstslide
WiskundeMiddelbare schoolvwoLeerjaar 5

In deze les zitten 26 slides, met interactieve quizzen en tekstslides.

time-iconLesduur is: 60 min

Onderdelen in deze les

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Weet je nog
Herkenningsniveaus voor primitiveren

Slide 1 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
f -> F
Herkenningsniveaus voor primitiveren
f(x)=x2+sin(x)

Slide 2 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
f -> F
Herkenningsniveaus voor primitiveren
f(x)=x2+sin(x)
=31x3cos(x)+c
F(x)

Slide 3 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?


xcos(x2)

Slide 4 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?

Voorbeeld (differentiëren met kettingregel):
xcos(x2)
f(x)=sin(x2)

Slide 5 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?

Voorbeeld (differentiëren met kettingregel):
xcos(x2)
f(x)=sin(x2)
f(u)=sin(u)
met
u=x2

Slide 6 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?

Voorbeeld (differentiëren met kettingregel):
xcos(x2)
f(x)=sin(x2)
f(u)=sin(u)
met
u=x2
f(x)=dudfdxdu
'

Slide 7 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?

Voorbeeld (differentiëren met kettingregel):
xcos(x2)
f(x)=sin(x2)
f(u)=sin(u)
met
u=x2
f(x)=dudfdxdu
'
f(x)=2xcos(x2)
'

Slide 8 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?


xcos(x2)
f(x)=sin(x2)
f(x)=2xcos(x2)
'

Slide 9 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Lastiger
Hoe zou een primitieve van                             er uit kunnen zien?

Een primitieve van                            is dus   

xcos(x2)
xcos(x2)
21sin(x2)
f(x)=sin(x2)
f(x)=2xcos(x2)
'

Slide 10 - Tekstslide

Einde les

Slide 11 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode

Slide 12 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode

Slide 13 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode
Bij deze laatste stap is het volgende gebruikt:
dxdx2=2x
2xdx=dx2

Slide 14 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode
Nu gebruiken we  de substitutie
Dan krijgen we: 
u=x2

Slide 15 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode
Nu gebruiken we  de substitutie
Dan krijgen we: 
u=x2

Slide 16 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode
Nu gebruiken we  de substitutie
Dan krijgen we: 
u=x2

Slide 17 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode
Bereken de volgende integraal en noteer je uitwerking.

Slide 18 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Substitutiemethode
Probeer te herkennen hoe de functie in de integraal is ontstaan uit de kettingregel. Welke substitutie is gebruikt en waar vind je de afgeleide van die substitutie?

Slide 19 - Tekstslide

Wanneer substitutie?

Slide 20 - Woordweb

Foto-opdracht
Bereken de integraal hieronder en maak daarna een foto van je uitwerkingen. Upload deze foto daarna naar de Classroom bij het kopje 'Foto-opdracht Les 2'.


Als je klaar bent, begin dan met het huiswerk:
K.1 - Vragen 3 t/m 6 en 8 t/m 16

Slide 21 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Recap: Herkenningsniveaus

Slide 22 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Recap: Herkenningsniveaus

Slide 23 - Tekstslide

Recap: wat kunnen we al?
  • Machtsfuncties        
  • Speciaal geval: 1/x 
  • Exponentiële functies 
  • Logaritmische functies 
  • Sinusoïden 
Recap: Herkenningsniveaus

Slide 24 - Tekstslide

Welke van de volgende functies denk je nu te kunnen primitiveren?
Ik herken direct de primitieve
Ik herken de familie
Ik herken (nog) niks
Ik herken de substitutie-techniek

Slide 25 - Sleepvraag

Einde les

Slide 26 - Tekstslide