Je kunt de grafiek tekenen bij kwadratische formule.
H5: Machten, wortels en verbanden:
VK: Kwadraat en wortel
5.1: Machten
5.2: Volgorde & deelstreep
5.4: Lineaire formules met haakjes
5.5: Formules met een
deelstreep
5.6: Formules met
kwadraten
5.7: Formules met wortels
5.8: Periodieke grafiek
Slide 2 - Slide
5.6: Formules met kwadraten
Figuur 1 heeft 4 kubussen. Dit kun je tellen of via de formule doen:
aantalkubussen=3+n2
=3+1=4kubussen
=3+12
n = figuurnummer,
n = 1
Slide 3 - Slide
5.6: Formules met kwadraten
Figuur 2 heeft 7 kubussen. Dit kun je tellen of via de formule doen:
aantalkubussen=3+n2
=3+4=7kubussen
=3+22
n = figuurnummer,
n = 2
Slide 4 - Slide
5.6: Formules met kwadraten
Figuur 3 heeft 12 kubussen. Dit kun je tellen of via de formule doen:
aantalkubussen=3+n2
=3+9=12kubussen
=3+32
n = figuurnummer,
n = 3
Slide 5 - Slide
Figuur 4 staat niet op de tekening.
n = figuurnummer,
n = 4
Slide 6 - Slide
Figuur 4 staat niet op de tekening. Je zou het figuur wel kunnen maken en dan tellen hoeveel kubussen er zijn. Maar met de formule uitrekenen gaat veel sneller:
aantalkubussen=3+n2
n = figuurnummer,
n = 4
Slide 7 - Slide
Figuur 4 staat niet op de tekening. Je zou het figuur wel kunnen maken en dan tellen hoeveel kubussen er zijn. Maar met de formule uitrekenen gaat veel sneller:
aantalkubussen=3+n2
=3+42
n = figuurnummer,
n = 4
Slide 8 - Slide
Figuur 4 staat niet op de tekening. Je zou het figuur wel kunnen maken en dan tellen hoeveel kubussen er zijn. Maar met de formule uitrekenen gaat veel sneller:
aantalkubussen=3+n2
=3+16=
=3+42
n = figuurnummer,
n = 4
Slide 9 - Slide
Figuur 4 staat niet op de tekening. Je zou het figuur wel kunnen maken en dan tellen hoeveel kubussen er zijn. Maar met de formule uitrekenen gaat veel sneller:
aantalkubussen=3+n2
=3+16=19kubussen
=3+42
n = figuurnummer,
n = 4
Slide 10 - Slide
Figuur 25 staat ook niet op de tekening, maar kun je ook uitrekenen met de formule.
n = figuurnummer,
n = 25
Slide 11 - Slide
Figuur 25 staat ook niet op de tekening, maar kun je ook uitrekenen met de formule. Figuur 25 heeft 628 kubussen. Dit is niet te doen om na te bouwen, dus met de formule:
aantalkubussen=3+n2
n = figuurnummer,
n = 25
Slide 12 - Slide
Figuur 25 staat ook niet op de tekening, maar kun je ook uitrekenen met de formule. Figuur 25 heeft 628 kubussen. Dit is niet te doen om na te bouwen, dus met de formule:
aantalkubussen=3+n2
=3+252
n = figuurnummer,
n = 25
Slide 13 - Slide
Figuur 25 staat ook niet op de tekening, maar kun je ook uitrekenen met de formule. Figuur 25 heeft 628 kubussen. Dit is niet te doen om na te bouwen, dus met de formule:
aantalkubussen=3+n2
=3+625=
=3+252
n = figuurnummer,
n = 25
Slide 14 - Slide
Figuur 25 staat ook niet op de tekening, maar kun je ook uitrekenen met de formule. Figuur 25 heeft 628 kubussen. Dit is niet te doen om na te bouwen, dus met de formule:
aantalkubussen=3+n2
=3+625=628kubussen
=3+252
n = figuurnummer,
n = 25
Slide 15 - Slide
5.6: Formules met kwadraten
Zo kun je dus van alle figuurnummers uitrekenen hoeveel kubussen die heeft.
Deze formule noemen we een kwadratische formule. Er staat immers een kwadraat in.
aantalkubussen=3+n2
Slide 16 - Slide
Slide 17 - Slide
Slide 18 - Slide
5.6: Kwadratische formule
y = 2x2 + 5x + 4
y = -0,5x2 - 2x
y = x2 + 0,25x - 9
Slide 19 - Slide
Grafiek van een kwadratische formule
De grafiek van een kwadratische formule heet een parabool.
Het is een vloeiende lijn --> Tekenen zonder geodriehoek
De grafiek heeft een maximum of een minimum (hoogste/laagste punt)
Slide 20 - Slide
Theorie: 6.5 Parabool
Afschieten van een waterraket
Hoogte in m = 6 x afstand - afstand²
Hoogte=6a−a2
Kwadratische
woordformule
Kwadratische letterformule
(Berg)
Parabool
Symmetrisch
Vloeiende kromme
Slide 21 - Slide
5.6: Kwadratische formules
snelheid in km/uur = 50 + 2t2
a: t = 1 seconde.
Slide 22 - Slide
5.6: Kwadratische formules
snelheid in km/uur = 50 + 2t2
b: t = 3 seconden.
Slide 23 - Slide
Kwadratische formule
Slide 24 - Slide
Kwadratische formule
Slide 25 - Slide
Kwadratische formule
Slide 26 - Slide
Terugblik
Slide 27 - Slide
Terugblik
Slide 28 - Slide
Toets in je rekenmachine in:
Je komt dan uit op 36.
Het punt (40 ; 36)
ligt op de grafiek.
Slide 29 - Slide
Slide 30 - Slide
uitwerking b:
a = 0 -->
a = 40 --> Hoogte in m = 36, want dat hebben we al in opg 74a berekend.
a = 80 -->
a = 120 -->
etc.
hoogteinm=1,08⋅0−0,0045⋅02=0
hoogteinm=1,08⋅80−0,0045⋅802=57,6
hoogteinm=1,08⋅120−0,0045⋅1202=64,8
Slide 31 - Slide
Hoeveel meter is het hoogste punt van de boog boven het wegdek?
Slide 32 - Slide
Hoeveel meter is het hoogste punt van de boog boven het wegdek?
Slide 33 - Slide
Hoeveel meter is het hoogste punt van de boog boven het wegdek?
Dus het hoogste punt is 64,8 m boven het wegdek.
Slide 34 - Slide
Hoeveel meter is het hoogste punt van de boog boven het water?
Dus het hoogste punt is 64,8 m boven het wegdek.
Slide 35 - Slide
Hoeveel meter is het hoogste punt van de boog boven het water?
Dus het hoogste punt is 64,8 m boven het wegdek.
Slide 36 - Slide
Hoeveel meter is het hoogste punt van de boog boven het water?
Dus het hoogste punt is 64,8 m boven het wegdek.
Het hoogste punt van de brug ligt dan 25 + 64,8 = 89,8 m hoogte.
Slide 37 - Slide
Maken
Maken:
Opdracht
Maken 62 t/m 72
Controleren en nakijken:
Maken 47 t/m 58 (Niet maken 51,52 en 53)
Blz. 27 t/m 30
timer
10:00
Slide 38 - Slide
Leerdoel behaald?
Je weet wat een woordformule is,
hoe je deze kunt herkennen
en hoe je hier berekeningen mee kunt maken.
Je kunt de grafiek tekenen bij kwadratische formule.