Cette leçon contient 29 diapositives, avec quiz interactifs et diapositives de texte.
La durée de la leçon est: 60 min
Éléments de cette leçon
Voortgezette Integraalrekening
Slide 1 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Hoofdstuk K
Keuzehoofdstuk: Voortgezette integraalrekening
PTA-toets
Slide 2 - Diapositive
Test
A
A
B
B
Slide 3 - Quiz
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Slide 4 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Vorige lessen
Herkenningsniveaus voor primitiveren
Slide 5 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Vorige lessen
Herkenningsniveaus voor primitiveren
f(x)=x2+sin(x)
Slide 6 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Vorige lessen
Herkenningsniveaus voor primitiveren
f(x)=x2+sin(x)
=31x3−cos(x)+c
F(x)
Slide 7 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Lastiger
Hoe zou een primitieve van er uit kunnen zien?
x⋅cos(x2)
Slide 8 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Lastiger
Hoe zou een primitieve van er uit kunnen zien?
Voorbeeld (differentiëren met kettingregel):
x⋅cos(x2)
f(x)=sin(x2)
Slide 9 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Lastiger
Hoe zou een primitieve van er uit kunnen zien?
Voorbeeld (differentiëren met kettingregel):
x⋅cos(x2)
f(x)=sin(x2)
f(u)=sin(u)
met
u=x2
Slide 10 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Lastiger
Hoe zou een primitieve van er uit kunnen zien?
Voorbeeld (differentiëren met kettingregel):
x⋅cos(x2)
f(x)=sin(x2)
f(u)=sin(u)
met
u=x2
f(x)=dudf⋅dxdu
'
Slide 11 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Lastiger
Hoe zou een primitieve van er uit kunnen zien?
Voorbeeld (differentiëren met kettingregel):
x⋅cos(x2)
f(x)=sin(x2)
f(u)=sin(u)
met
u=x2
f(x)=dudf⋅dxdu
'
f(x)=2x⋅cos(x2)
'
Slide 12 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Lastiger
Hoe zou een primitieve van er uit kunnen zien?
x⋅cos(x2)
f(x)=sin(x2)
f(x)=2x⋅cos(x2)
'
Slide 13 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Lastiger
Hoe zou een primitieve van er uit kunnen zien?
Een primitieve van is dus
x⋅cos(x2)
x⋅cos(x2)
21⋅sin(x2)
f(x)=sin(x2)
f(x)=2x⋅cos(x2)
'
Slide 14 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Substitutiemethode
Slide 15 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Substitutiemethode
Slide 16 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Substitutiemethode
Bij deze laatste stap is het volgende gebruikt:
dxdx2=2x
2x⋅dx=dx2
Slide 17 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Substitutiemethode
Nu gebruiken we de substitutie
Dan krijgen we:
u=x2
Slide 18 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Substitutiemethode
Nu gebruiken we de substitutie
Dan krijgen we:
u=x2
Slide 19 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Substitutiemethode
Nu gebruiken we de substitutie
Dan krijgen we:
u=x2
Slide 20 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Substitutiemethode
Bereken de volgende integraal en noteer je uitwerking.
Slide 21 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Substitutiemethode
Probeer te herkennen hoe de functie in de integraal is ontstaan uit de kettingregel. Welke substitutie is gebruikt en waar vind je de afgeleide van die substitutie?
Slide 22 - Diapositive
Wanneer substitutie?
Slide 23 - Carte mentale
Foto-opdracht
Bereken de integraal hieronder en maak daarna een foto van je uitwerkingen. Upload deze foto daarna naar de IT's bij het kopje 'Foto-opdracht'.
Als je klaar bent, ga dan verder met het huiswerk:
HK: DT - 1,2,3,10,11,12 en H11: GO - 22 t/m 26 (was 32)
Slide 24 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Recap: Herkenningsniveaus
Slide 25 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Recap: Herkenningsniveaus
Slide 26 - Diapositive
Recap: wat kunnen we al?
Machtsfuncties
Speciaal geval: 1/x
Exponentiële functies
Logaritmische functies
Sinusoïden
Recap: Herkenningsniveaus
Slide 27 - Diapositive
Welke van de volgende functies denk je nu te kunnen primitiveren?